热点新闻
ggplot2再话箱线图之几何填充
2023-07-07 14:28  浏览:1943  搜索引擎搜索“养老之家”
温馨提示:信息一旦丢失不一定找得到,请务必收藏信息以备急用!本站所有信息均是注册会员发布如遇到侵权请联系文章中的联系方式或客服删除!
联系我时,请说明是在养老之家看到的信息,谢谢。
展会发布 展会网站大全 报名观展合作 软文发布

有观众老爷询问如何对箱线图进行几何形状填充,那么今天就来具体介绍一番;在原有的基础上做了一些小的改动也许恰好您正好有此特殊需求,需要着重体会八个字变实为虚,变虚为实,希望对各位观众老爷有所帮助;下面来看具体案例;

需要获取数据的欢迎关注我的号留言

加载R包

library(tidyverse) library(ggsci) library(ggprism) library(rstatix) library(ggpubr) library(ggpmisc) library(ggpattern)

加载数据

gapminder <- read_tsv("gapminder.xls")

数据清洗

df <- gapminder %>% filter(year %in% c(1957,2002,2007),continent !="Oceania") %>% select(country,year,lifeExp,continent)%>% mutate(paired = rep(1:(n()/3),each=3),year=factor(year))

统计分析

df_p_val1 <- df %>% group_by(continent) %>% wilcox_test(lifeExp ~ year) %>% adjust_pvalue(p.col = "p", method = "bonferroni") %>% add_significance(p.col = "p.adj") %>% add_xy_position(x = "year", dodge = 0.8)

构建填充类型

下面函数来自ggpattern包官方文档
https://coolbutuseless.github.io/package/ggpattern/articles/developing-patterns.html

tiling3_pattern <- function(params, boundary_df, aspect_ratio, legend = FALSE) { args <- as.list(params) args <- args[grep("^pattern_", names(args))] # hexagonal tiling using "regular_polygon" pattern args$pattern <- "polygon_tiling" # three-color tiling using `fill`, `pattern_fill` and their "average" avg_col <- gridpattern::mean_col(params$fill, params$pattern_fill) args$pattern_fill <- c(params$fill, avg_col, args$pattern_fill) args$x <- boundary_df$x args$y <- boundary_df$y args$id <- boundary_df$id args$prefix <- "" do.call(gridpattern::patternGrob, args) } options(ggpattern_geometry_funcs = list(tiling3 = tiling3_pattern))

数据可视化

df %>% ggplot(aes(year,lifeExp)) + stat_boxplot(aes(ymin = ..lower.., ymax = ..upper..),outlier.shape = NA,width=0.5) + stat_boxplot(geom = "errorbar", aes(ymin = ..ymax..),width=0.2,size=0.35) + stat_boxplot(geom = "errorbar", aes(ymax = ..ymin..),width=0.2,size=0.35) + geom_boxplot_pattern(aes(pattern = year,pattern_angle = year,fill=year), pattern = 'tiling3', pattern_angle = 45,color="black", pattern_spacing = 0.045,outlier.shape = NA,linetype = "dashed",width=0.5,size=0.35)+ stat_summary(geom = "crossbar", fun = "median",width = 0.5,color="black",size=0.38)+ stat_pvalue_manual(df_p_val1,label = "p.adj.signif",label.size=5,hide.ns = F)+ scale_size_continuous(range=c(1,3))+ # geom_smooth(method = "lm", formula = NULL,size=1,se=T,color="black",linetype="dashed",aes(group=1))+ stat_cor(label.y = 25,aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~"),group=1),color="black", label.x.npc = "left")+ stat_regline_equation(label.y = 19,aes(group=1),color="black")+ facet_wrap(.~continent,nrow=1)+ scale_fill_npg()+ scale_x_discrete(guide = "prism_bracket")+ scale_y_continuous(limits = c(0,95),minor_breaks = seq(0,95,5),guide = "prism_offset_minor")+ labs(x=NULL,y=NULL)+ theme_prism(base_line_size =0.4)+ theme(plot.margin=unit(c(0.5,0.5,0.5,0.5),units=,"cm"), strip.text = element_text(size=12), axis.line = element_line(color = "black",size = 0.4), panel.grid.minor = element_blank(), panel.grid.major = element_line(size = 0.2,color = "#e5e5e5"), axis.text.y = element_text(color="black",size=10), axis.text.x = element_text(margin = margin(t = -5),color="black",size=10), legend.position = "none", panel.spacing = unit(0,"lines"))+ coord_cartesian()




数据获取

还是熟悉的配方,除了构建三色形状填充外,需要体会的依然是变实为虚,变虚为实绘图思维尽在其中,那么本节介绍到此结束;需要数据的留言交流

发布人:56d7****    IP:117.173.23.***     举报/删稿
展会推荐
让朕来说2句
评论
收藏
点赞
转发